Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Infect Dis ; 133: 36-42, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2296740

ABSTRACT

OBJECTIVES: We estimated vaccine effectiveness (VE) of primary and booster vaccinations against SARS-CoV-2 infection overall and in four risk groups defined by age and medical risk condition during the Delta and Omicron BA.1/BA.2 periods. METHODS: VAccine Study COvid-19 is an ongoing prospective cohort study among Dutch adults. The primary end point was a self-reported positive SARS-CoV-2 test from July 12, 2021 to June 06, 2022. The analyses included only participants without a previous SARS-CoV-2 infection based on a positive test or serology. We used Cox proportional hazard models with vaccination status as the time-varying exposure and adjustment for age, sex, educational level, and medical risk condition. RESULTS: A total of 37,170 participants (mean age 57 years) were included. In the Delta period, VE <6 weeks after the primary vaccination was 80% (95% confidence interval 69-87) and decreased to 71% (65-77) after 6 months. VE increased to 96% (86-99) shortly after the first booster vaccination. In the Omicron period, these estimates were 46% (22-63), 25% (8-39), and 57% (52-62), respectively. For the Omicron period, an interaction term between vaccination status and risk group significantly improved the model (P <0.001), with generally lower VEs for those with a medical risk condition. CONCLUSION: Our results show the benefit of booster vaccinations against infection, also in risk groups; although, the additional protection wanes quite rapidly.


Subject(s)
COVID-19 , Adult , Humans , Middle Aged , COVID-19/epidemiology , COVID-19/prevention & control , Netherlands/epidemiology , Vaccine Efficacy , COVID-19 Vaccines , SARS-CoV-2 , Prospective Studies , Vaccination
2.
BMC Health Serv Res ; 23(1): 199, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2267885

ABSTRACT

BACKGROUND: In high-resource settings, structured diabetes self-management education is associated with improved outcomes but the evidence from low-resource settings is limited and inconclusive. AIM: To compare, structured diabetes self-management education to usual care, in adults with type 2 diabetes, in low-resource settings. DESIGN: Single-blind randomised parallel comparator controlled multi-centre trial. Adults (> 18 years) with type 2 diabetes from two hospitals in urban Ghana were randomised 1:1 to usual care only, or usual care plus a structured diabetes self-management education program. Randomisation codes were computer-generated, and allotment concealed in opaque numbered envelopes. The intervention effect was assessed with linear mixed models. MAIN OUTCOME: Change in HbA1c after 3-month follow-up. Primary analysis involved all participants. CLINICALTRIAL: gov identifier:NCT04780425, retrospectively registered on 03/03/2021. RESULTS: Recruitment: 22nd until 29th January 2021. We randomised 206 participants (69% female, median age 58 years [IQR: 49-64], baseline HbA1c median 64 mmol/mol [IQR: 45-88 mmol/mol],7.9%[IQR: 6.4-10.2]). Primary outcome data was available for 79 and 80 participants in the intervention and control groups, respectively. Reasons for loss to follow-up were death (n = 1), stroke(n = 1) and unreachable or unavailable (n = 47). A reduction in HbA1c was found in both groups; -9 mmol/mol [95% CI: -13 to -5 mmol/mol], -0·9% [95% CI: -1·2% to -0·51%] in the intervention group and -3 mmol/mol [95% CI -6 to 1 mmol/mol], -0·3% [95% CI: -0·6% to 0.0%] in the control group. The intervention effect was 1 mmol/mol [95%CI:-5 TO 8 p = 0.726]; 0.1% [95% CI: -0.5, 0.7], p = 0·724], adjusted for site, age, and duration of diabetes. No significant harms were observed. CONCLUSION: In low-resource settings, diabetes self-management education might not be associated with glycaemic control. Clinician's expectations from diabetes self-management education must therefore be guarded.


Subject(s)
Diabetes Mellitus, Type 2 , Self-Management , Adult , Humans , Female , Middle Aged , Male , Glycated Hemoglobin , Glycemic Control , Single-Blind Method
3.
Trials ; 23(1): 856, 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2053949

ABSTRACT

BACKGROUND: The COVID-19 pandemic significantly impacted the conduct of clinical trials through delay, interruption or cancellation. Decentralised methods in clinical trials could help to continue trials during a pandemic. This paper presents the results of an exploratory study conducted early in the pandemic to gain insight into and describe the experiences of organisations involved in clinical trials, with regard to the impact of COVID-19 on the conduct of trials, and the adoption of decentralised methods prior to, and as mitigation for the impact, of COVID-19. METHODS: A survey with 11 open-ended and four multiple choice questions was conducted in June 2020 among member organisations of the public-private "Trials@Home" consortium. The survey investigated (1) the impact and challenges of COVID-19 on the continuation of ongoing clinical trials, (2) the adoption of decentralised methods in clinical trials prior to and as a mitigation strategy for COVID-19, (3) the challenges of conducting clinical trials during COVID-19, (4) the expected permanency of COVID-19-driven changes to the adoption of decentralised methods in clinical trials, and (5) lessons learned from conducting clinical trials during the COVID-19 pandemic. A thematic, inductive analysis of open survey questions was performed, complemented with descriptive statistics (frequencies and distributions). RESULTS: The survey had a response rate of 81%. All organisations included in the analysis (n = 18) implemented (some) decentralised methods in their clinical trials prior to COVID-19, and 15 (83%) implemented decentralised methods as mitigation for COVID-19. Decentralised methods for IMP supply, patient-health care provider interaction and communication, clinic visits and source document verification were used more often as mitigation strategies than they were used prior to COVID-19. Many respondents expect to maintain those decentralised methods they implemented during COVID-19 in ongoing trials, as well as implement them in future trials. CONCLUSIONS: Decentralised methods are a widely implemented mitigation strategy for trial conduct in the face of the COVID-19 pandemic. The results of this survey show that there is an interest to continue the use of decentralised methods in future trials, but important points of attention have been identified that need solutions to help guide the transition from the traditional trial model to a more decentralised trial model.


Subject(s)
COVID-19 , Cross-Sectional Studies , Humans , Inosine Monophosphate , Pandemics , SARS-CoV-2
5.
Eur Heart J ; 43(37): 3578-3588, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2017894

ABSTRACT

Big data is central to new developments in global clinical science aiming to improve the lives of patients. Technological advances have led to the routine use of structured electronic healthcare records with the potential to address key gaps in clinical evidence. The covid-19 pandemic has demonstrated the potential of big data and related analytics, but also important pitfalls. Verification, validation, and data privacy, as well as the social mandate to undertake research are key challenges. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including patient representatives, clinicians, scientists, regulators, journal editors and industry. We propose the CODE-EHR Minimum Standards Framework as a means to improve the design of studies, enhance transparency and develop a roadmap towards more robust and effective utilisation of healthcare data for research purposes.


Subject(s)
COVID-19 , Electronic Health Records , COVID-19/epidemiology , Delivery of Health Care , Electronics , Humans , Pandemics/prevention & control
6.
Lancet Digit Health ; 4(10): e757-e764, 2022 10.
Article in English | MEDLINE | ID: covidwho-2004683

ABSTRACT

Big data is important to new developments in global clinical science that aim to improve the lives of patients. Technological advances have led to the regular use of structured electronic health-care records with the potential to address key deficits in clinical evidence that could improve patient care. The COVID-19 pandemic has shown this potential in big data and related analytics but has also revealed important limitations. Data verification, data validation, data privacy, and a mandate from the public to conduct research are important challenges to effective use of routine health-care data. The European Society of Cardiology and the BigData@Heart consortium have brought together a range of international stakeholders, including representation from patients, clinicians, scientists, regulators, journal editors, and industry members. In this Review, we propose the CODE-EHR minimum standards framework to be used by researchers and clinicians to improve the design of studies and enhance transparency of study methods. The CODE-EHR framework aims to develop robust and effective utilisation of health-care data for research purposes.


Subject(s)
COVID-19 , Pandemics , Big Data , Electronic Health Records , Electronics , Humans
7.
BMJ Open ; 12(6): e059254, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1902008

ABSTRACT

INTRODUCTION: Previous studies indicate people with diabetes mellitus (DM) may have varying treatment outcomes when receiving treatment for tuberculosis (TB) and that TB infection or its treatment may predispose them to develop an abnormal blood glucose or type 2 DM. This has implications for Eswatini which is a high TB burden country and with increasing cases of non-communicable diseases including DM. This study will describe the epidemiology of DM-TB comorbidity in a prospective cohort of patients receiving TB treatment and identify best practices for integration of care for non-communicable diseases into TB services in Eswatini. METHODS AND ANALYSIS: This study will employ a mixed-methods approach. Data from a prospective cohort of newly enrolled patients with TB at 12 health facilities from 1 June 2022 to 30 September 2022, and followed up to 30 April 2023, will be used. For the qualitative, key informants who provide TB services at the health facilities will be interviewed. Quantitative data from patients will be analysed descriptively and by tests of association and multivariate modelling. Key informant interviews from healthcare workers will be analysed using content analysis. ETHICS AND DISSEMINATION: This research has been approved by the Eswatini Health and Human Research Review Board and participant confidentiality will be maintained. COVID-19 safety measures to reduce the risk of infection or transmission by researchers and participants have been instituted. Key programmatic findings and how they can impact healthcare delivery and access will be presented to the specific programme in the Eswatini Ministry of Health and other relevant stakeholders.


Subject(s)
COVID-19 , Diabetes Mellitus , Noncommunicable Diseases , Tuberculosis , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Eswatini/epidemiology , Humans , Noncommunicable Diseases/epidemiology , Prospective Studies , Treatment Outcome , Tuberculosis/complications , Tuberculosis/epidemiology , Tuberculosis/therapy
8.
BMJ Open ; 12(6): e058274, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1902004

ABSTRACT

OBJECTIVES: We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device. DESIGN: Interim analysis of a prospective cohort study. SETTING, PARTICIPANTS AND INTERVENTIONS: Participants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. RESULTS: A total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO. CONCLUSION: Wearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial. Trial registration number ISRCTN51255782; Pre-results.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , Cohort Studies , Humans , Middle Aged , Prospective Studies , SARS-CoV-2
9.
Trials ; 22(1): 694, 2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1463261

ABSTRACT

OBJECTIVES: It is currently thought that most-but not all-individuals infected with SARS-CoV-2 develop symptoms, but the infectious period starts on average 2 days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: • The algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) • The algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. The study will start with an initial learning phase (maximum of 3 months), followed by period 1 (3 months) and period 2 (3 months). Subjects entering the study at the end of the recruitment period may directly start with period 1 and will not be part of the learning phase. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in either period 1 or period 2 and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either sequence 1 (experimental condition first) or sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6500 normal-risk individuals and 3500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal and self-sampling serology and PCR kits. More information on the study can be found in www.covid-red.eu . During recruitment, subjects will be invited to visit the COVID-RED web portal. After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria: Inclusion criteria: • Resident of the Netherlands • At least 18 years old • Informed consent provided (electronic) • Willing to adhere to the study procedures described in the protocol • Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, the study team should be notified) • Be able to read, understand and write Dutch Exclusion criteria: • Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) • Current suspected (e.g. waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) • Participating in any other COVID-19 clinical drug, vaccine or medical device trial (self-reported) • Electronic implanted device (such as a pacemaker; self-reported) • Pregnant at the time of informed consent (self-reported) • Suffering from cholinergic urticaria (per the Ava bracelet's user manual; self-reported) • Staff involved in the management or conduct of this study INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronize it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 h, the Ava COVID-RED app's underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess the intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). Note that both algorithms will also instruct to seek testing when any SARS-CoV-2 symptoms are reported in line with those defined by the Dutch national institute for public health and the environment 'Rijksinstituut voor Volksgezondheid en Milieu' (RIVM) guidelines. MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with the self-reported Daily Symptom Diary data and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional twenty secondary and exploratory objectives which address, among others, infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2-infected participants and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (between month 0 and 3.5 months after the start of subject recruitment), at the end of the learning phase (month 3; note that this sampling moment is skipped if a subject entered the study at the end of the recruitment period), period 1 (month 6) and period 2 (month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the learning phase is positive, or if the subject entered the study at the end of the recruitment period, and samples collected at the end of period 1 will only be analysed if the sample collected at the end of period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called COVID-positive mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using the data collected in period 2 (months 6 through 9). Within this period, serology tests (before and after period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMIZATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimentalcondition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in approximately equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded to the study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on the data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 20,000 subjects will be recruited and randomized 1:1 to either sequence 1 (experimental condition followed by control condition) or sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6500 normal-risk and 3500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 3.0, dated May 3, 2021. Start of recruitment: February 19, 2021. End of recruitment: June 3, 2021. End of follow-up (estimated): November 2021 TRIAL REGISTRATION: The Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 , Wearable Electronic Devices , Adolescent , COVID-19 Vaccines , Cross-Over Studies , Humans , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2
10.
Trials ; 22(1): 412, 2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1277967

ABSTRACT

OBJECTIVES: It is currently thought that most-but not all-individuals infected with SARS-CoV-2 develop symptoms, but that the infectious period starts on average two days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) the algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. All subjects will participate in an initial Learning Phase (varying from 2 weeks to 3 months depending on enrolment date), followed by two contiguous 3-month test phases, Period 1 and Period 2. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in one of these periods and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either Sequence 1 (experimental condition first) or Sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6,500 normal-risk individuals and 3,500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal, and self-sampling serology and PCR kits. During recruitment, subjects will be invited to visit the COVID-RED web portal ( www.covid-red.eu ). After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria. INCLUSION CRITERIA: Resident of the Netherlands At least 18 years old Informed consent provided (electronic) Willing to adhere to the study procedures described in the protocol Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, study team should be notified) Be able to read, understand and write Dutch Exclusion criteria: Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) Previously received a vaccine developed specifically for COVID-19 or in possession of an appointment for vaccination in the near future (self-reported) Current suspected (e.g., waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) Participating in any other COVID-19 clinical drug, vaccine, or medical device trial (self-reported) Electronic implanted device (such as a pacemaker; self-reported) Pregnant at time of informed consent (self-reported) Suffering from cholinergic urticaria (per the Ava bracelet's User Manual; self-reported) Staff involved in the management or conduct of this study INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronise it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 hours, the Ava COVID-RED app's underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that: no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature, and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava Bracelet data when coupled with the self-reported Daily Symptom Diary data, and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional seventeen secondary outcomes which address infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2 infected participants, and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme, and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (Month 0), and at the end of the Learning Phase (Month 3), Period 1 (Month 6) and Period 2 (Month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the Learning Phase is positive, and samples collected at the end of Period 1 will only be analysed if the sample collected at the end of Period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called "COVID-positive" mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using data collected in Period 2 (Month 6 through 9). Within this period, serology tests (before and after Period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMISATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded as to study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED appfor the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 20,000 subjects will be recruited and randomized 1:1 to either Sequence 1 (experimental condition followed by control condition) or Sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6,500 normal-risk and 3,500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 1.2, dated January 22nd, 2021 Start of recruitment: February 22nd, 2021 End of recruitment (estimated): April 2021 End of follow-up (estimated): December 2021 TRIAL REGISTRATION: The trial has been registered at the Netherlands Trial Register on the 18th of February, 2021 with number NL9320 ( https://www.trialregister.nl/trial/9320 ) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 , Wearable Electronic Devices , Adolescent , COVID-19 Vaccines , Cross-Over Studies , Female , Humans , Netherlands , Pregnancy , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
11.
SELECTION OF CITATIONS
SEARCH DETAIL